Entraining gravity currents
نویسندگان
چکیده
Entrainment of ambient fluid into a gravity current, while often negligible in laboratory-scale flows, may become increasingly significant in large-scale natural flows. We present a theoretical study of the effect of this entrainment by augmenting a shallow water model for gravity currents under a deep ambient with a simple empirical model for entrainment, based on experimental measurements of the fluid entrainment rate as a function of the bulk Richardson number. By analysing long-time similarity solutions of the model, we find that the decrease in entrainment coefficient at large Richardson number, due to the suppression of turbulent mixing by stable stratification, qualitatively affects the structure and growth rate of the solutions, compared to currents in which the entrainment is taken to be constant or negligible. In particular, mixing is most significant close to the front of the currents, leading to flows that are more dilute, deeper and slower than their non-entraining counterparts. The long-time solution of an inviscid entraining gravity current generated by a lock-release of dense fluid is a similarity solution of the second kind, in which the current grows as a power of time that is dependent on the form of the entrainment law. With an entrainment law that fits the experimental measurements well, the length of currents in this entraining inviscid regime grows with time approximately as t0.447. For currents instigated by a constant buoyancy flux, a different solution structure exists in which the current length grows as t4/5. In both cases, entrainment is most significant close to the current front.
منابع مشابه
Numerical Modeling of Saline Gravity Currents Using EARSM and Buoyant k- Turbulence Closures
Gravity currents are very common in nature and may appear in rivers, lakes, oceans, and the atmosphere. They are produced by the buoyant forces interacting between fluids of different densities and may introduce sediments and pollutants into water bodies. In this study, the hydrodynamics and propagation of gravity currents are investigated using WISE (Width Integrated Stratified Environments), ...
متن کاملThe study of effective stress and pore water pressures in the foundation of a concrete gravity platform affected by loads due to waves, currents and wind in the Persian Gulf
It is proposed to use a single base platform in the Persian Gulf considering its low depth and more appropriate environmental conditions in comparison to North Sea and Mexico Gulf where this kind of platform is very popular. The pile of platform is responsible for transmission of environmental loads resulted from waves, currents, wind and dead loads to foundation of platform. Using SACS 5.3 sof...
متن کاملA theoretical model of cooling viscous gravity currents with temperature - dependent viscosity
Gravity current theory has applications to any geophysical phenomena involving the spreading of fluid on a horizontal interface. Many geological gravity currents (e.g., lava flows and mantle plume heads) are composed of cooling fluid with temperature-dependent viscosity. An axisymmetric gravity current theory accounting for these thermo-viscous effects is thus presented and explored here. Unlik...
متن کاملA gravity current model of cooling mantle plume heads with temperaturedependent buoyancy and viscosity
Gravity currents are a ubiquitous fluid dynamical phenomenon which involve the horizontal spreading of fluid masses under their own weight or buoyancy. A theoretical model is developed to account for the effects of bulk cooling on the dynamics and morphology of geological gravity currents, with particular focus on mantle plume heads spreading beneath the lithosphere. As many geological gravity ...
متن کاملDynamics of Two-Dimensional Turbulent Bottom Gravity Currents
In light of previous numerical studies demonstrating a strong sensitivity of the strength of thermohaline circulation to the representation of overflows in ocean general circulation models, the dynamics of bottom gravity currents are investigated using a two-dimensional, nonhydrostatic numerical model. The model explicitly resolves the Kelvin–Helmholtz instability, the main mechanism of mixing ...
متن کامل